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235, 13565-905 S̃ao Carlos SP, Brazil
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Abstract. We obtain an exact analytical solution to the master equation for the diagonal density
matrix elements of the one-mode quantized field, when both one- and two-photon absorption
processes are present. Explicit expressions for the time dependences of the factorial moments
are found. The special cases of the initial Fock’s, binomial, negative binomial, thermal, and
coherent states, as well as of their even/odd counterparts are considered in detail. The existence
of the universal time-dependent distribution of initially highly excited states is discovered, and
simple explicit expressions are given for some specific values of parameters. This distribution
holds for times exceeding the transition time of the order of(D2n0)

−1, D2, n0 being the two-
photon absorption coefficient and the initial mean photon number, respectively. The transition
time from any initial state to the ground state is shown to be finite even for highly excited
states, provided thatD2 6= 0. Although the final stage of evolution is characterized by the
sub-Poissonian statistics for any initial state, Mandel’s parameter is shown to be very sensitive
to small differences in high-order initial factorial moments at the intermediate stage.

1. Introduction

The process of quantum relaxation is described usually in the framework of the master
equation for the density operator̂ρ, which has the following structure (in the interaction
picture) [1–3]:

∂ρ̂

∂t
= 1

2

∑
n

Dn(2Ânρ̂Â
†
n − Â†nÂnρ̂ − ρ̂Â†nÂn) Dn > 0 (1)

whereÂn may be an arbitrary linear operator. If the system under study is an electromagnetic
field mode (or an equivalent harmonic oscillator), then each operatorÂn can be expressed
in terms of the annihilation and creation operatorsâ, â† satisfying the commutation relation
[â, â†] = 1. For instance, the choicen = 2, Â1 = â, Â2 = â2 means that both one- and
two-photon absorption processes are present. A consequence of equation (1) is the following
set of equations for the occupation probabilities in the Fock basis,pn(t) = 〈n|ρ̂(t)|n〉,
dpn/dt = D1[(n+ 1)pn+1− npn] +D2[(n+ 1)(n+ 2)pn+2− n(n− 1)pn]. (2)

Introducing thegenerating function

F(z, t) =
∞∑
n=0

pn(t)z
n (3)
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one can replace this infinite system of coupled ordinary differential equations by a single
partial differential equation

∂F/∂t = D1(1− z)∂F/∂z +D2(1− z2∂2F/∂z2. (4)

A general solution to this equation in the special caseD2 = 0 was found in [4, 5]:

F(z, t) = F0(1+ (z − 1)e−D1t ) F0(z) ≡ F(z, 0). (5)

A solution of equation (4) withD1 = 0 was given in [6–10]:

F(z, t) =
∞∑
n=0

bnC
(−1/2)
n (z) exp[−D2n(n− 1)t ] (6)

whereC(α)n (z) is the Gegenbauer polynomial, and the coefficientsbn read

bn = (n− 1
2)

∫ 1

−1
[F0(z)− b+ − b−z]C(3/2)n−2 (z) dz n > 2 (7)

b0 = b+ b1 = −b− b± = 1
2[1± F0(−1)]. (8)

The results of the papers cited (for other references see, e.g. [11, 12]) show that one- and
two-photon absorption processes are qualitatively different in many respects. For instance,
the one-photon processes preserve the type of the photon statistics (Poissonian, sub- or
super-Poissonian), whereas the two-photon absorption results in the antibunching effect, or
sub-Poissonian statistics for any initial states. Due to this reason, it seems interesting to
consider the case when both the processes, one- and two-photon, are present simultaneously,
and to analyse the effects of their competition. A solution of equation (4) withD1 6= 0
andD2 6= 0 was expressed in terms of the Jacobi polynomials in a short article [13]. The
aim of our paper is to provide a detailed investigation of the problem. In particular, we
consider a large family of initial states, for which the explicit expressions for the coefficients
in expansions like (6) can be found, and analyse different asymptotical and limit cases. We
confine ourselves to finding analytical expressions for the time-dependentdiagonal matrix
elements of the density operator. The behaviour of the off-diagonal elements will be the
subject of another publication.

The paper is organized as follows. In the next section we obtain a general solution to
the master equation and demonstrate the existence of a universal distribution function in
the case of highly excited initial states. In section 3 we consider the mean transition time
to the ground state, and show that it is limited even for highly excited states, provided that
the two-photon absorption coefficient is not equal to zero. In section 4 we give explicit
expressions for the factorial moments and Mandel’sQ-factor in the general case. Different
important special cases are considered in section 5. A summary and conclusion are given
in section 6. The details of calculations are discussed in the appendix.

2. General solution to the master equation

It is natural to solve equation (4) by separation of variables:F(z, t) = f (z)e−λt . Then
function f (z) must satisfy the equation

D2(1− z2)f ′′ +D1(1− z)f ′ + λf = 0.

Comparing it with the equation for the Jacobi polynomialP
(α,β)
n (x) [14, 15]

(1− x2)f ′′ + [β − α − (β + α + 2)x]f ′ + n(n+ β + α + 1)f = 0
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we obtain the following general solution to equation (4) (see also [13]):

F(z, t) = 1+
∞∑
n=1

AnP
(−1,ν−1)
n (z)e−λnt (9)

ν = D1/D2 λn = D1n+D2n(n− 1) = D2n(n+ ν − 1). (10)

The explicit form of the polynomialP (−1,β)
n (z) with n > 1 is (hereafterβ = ν − 1)

P (−1,β)
n (z) = 1

n

n∑
k=1

(−n)k(β + n)k
k!(k − 1)!

(
1− z

2

)k
= (n− 1)!

n∑
k=1

(β + n)k
k!(k − 1)!(n− k)!

(
z − 1

2

)k
(11)

so the normalization conditionF(1, t) ≡ 1 is fulfilled. The coefficientsAn must be
determined from the initial functionF0(z). The delicate point is that the Jacobi polynomials
P
(α,β)
n (x) form a complete orthonormal set in the interval(−1, 1) with the weight factor
(x − 1)α(x + 1)β under the conditionα > −1, β > −1. In the case under studyα = −1.
None the less, one can check that form, n > 1 the following relations hold (see the
appendix):

∫ 1

−1
(1− x)−1(1+ x)βP (−1,β)

n (x)P (−1,β)
m (x) dx =


2β(n+ β)
n(2n+ β) m = n
0 m 6= n.

(12)

Thus, the coefficientsAn can be calculated as follows:

An = 2−β
n(2n+ β)
(n+ β)

∫ 1

−1
[F0(z)− 1](1− z)−1(1+ z)βP (−1,β)

n (z) dz. (13)

The integral on the right-hand side exists becauseP
(−1,β)
n (1) = 0. Moreover, using

Rodrigues’ formula for the Jacobi polynomials and integration by parts, we can transform
(13) into the form (ifν > 0)

An = 2−ν
(2n+ β)
(n+ β)

∫ 1

−1
F ′0(z)(1+ z)νP (0,ν)n−1 (z) dz (14)

whose integrand is free of singularities. Atν = 0 solution (9) goes into (6) with
bn = An(1− n)/2 (for n > 2). Due to equations (3), (9), and the relation [14, 15]

(d/dx)mP (α,β)n (x) = 2−m(n+ α + β + 1)mP
(α+m,β+m)
n−m (x) (15)

the time-dependent occupation probabilities can be expressed as

pm(t) =
∞∑
n=m

AnB
(ν)
nme−λnt (16)

with

B(ν)nm =
(n+ ν − 1)m

2mm!
P
(m−1,m+ν−1)
n−m (0)

= (−1)n−m(n+ ν − 1)m(m+ ν)n−m
2nm!(n−m)! F(m− n, 1− n;m+ ν;−1). (17)
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F(a, b; c; z) is the Gauss hypergeometric function. In particular, the occupation probabilities
of the ground and the first-excited states read

p0(t) = 1+
∞∑
n=1

An
(−1)n(ν)n

2nn!
F(−n, 1− n; ν;−1)e−λnt (18)

p1(t) =
∞∑
n=1

An
(−1)n−1(1+ ν)n−1(n+ ν − 1)

2n(n− 1)!
F(1− n, 1− n; 1+ ν;−1)e−λnt . (19)

ForD2 = 0, solution (5) can be written as follows,

F(z, t) =
∞∑
k=0

pk(0)[1+ (z − 1)e−D1t ]k

=
∞∑
k=0

pk(0)
k∑

m=0

(z − 1)m
(
k

m

)
e−D1tm =

∞∑
m=0

(z − 1)me−D1tm
∞∑
k=m

pk(0)

(
k

m

)
.

If 0 < D2� D1, thenβ � 1, and formula (11) can be simplified:

P (−1,β)
n (z) ≈ (βy)n

n!
[1+O(n2/βy)] β � 1 y = z − 1

2
.

Evidently, for ν � 1 and sufficiently large values oft , the small corrections of the order
of O(1/ν) in the pre-exponential coefficients of expansion (9) are not significant, so one
should take into account the changes in the arguments of the exponential functions only.
Then we have an approximate formula

F(z, t) ≈
∞∑
m=0

Nm(0)
m!

(z − 1)me−λmt (20)

where

Nm ≡
∞∑
n=m

n(n− 1) . . . (n−m+ 1)pn = ∂mF/∂zm|z=1 (21)

is themth factorial moment. In this approximation,

pn(t) ≈ 1

n!

∞∑
m=n

Nm(0)
(m− n)! (−1)m−ne−λmt

so the occupation probability of themth level at t � 1/D1 is determined by the initial
mth factorial moment:pm(t � 1/D1) ≈ (Nm(0)/m!) exp(−λmt). However, this is true
provided that the initial mean photon number is not too large,n0 ≡ N1(0)� ν.

In the opposite case,n0� ν, the final stage of the evolution turns out to beindependent
of the initial conditions. Indeed, for large values ofn0, the functionF ′0(z) has a sharp
maximum atz = 1,F ′0(1) = n0, whose width does not exceedδz ∼ 1/n0 (becauseF0(z) > 0
for z > 0). Therefore the main contribution to integral (14) is given by the interval(1−δz, 1)
(in general, functionF ′0(z) may also possess a large maximum or minimum at pointz = −1,
but its contribution is supressed by the factor(1+ z)ν in the integrand). Ifn � n0, then
functionP (0,ν)n−1 (z) almost does not vary in the interval(1− δz, 1), so we may replace it by

P
(0,ν)
n−1 (1) ≡ 1 and write(1+ z)ν ≈ 2ν . Thus, we arrive at the asymptotical formula (see

also [13])

A(∞)n = 2n− 1+ ν
n− 1+ ν n� n0. (22)
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Consequently, inany statesatisfying the initial conditionn0� max(ν, 1), the evolution of
the occupation probabilities is described, after a short transient time of the order of(D2n0)

−1

(see the end of section 4), by the universal formula

p(∞)m (t) =
∞∑
n=m

G(ν)
nme−λnt (23)

G(ν)
nm =

(−1)n−m(2n− 1+ ν)(n+ ν)m−1(m+ ν)n−m
2nm!(n−m)! F(m− n, 1− n;m+ ν;−1). (24)

If ν is an integer, thenF(m−n, 1−n;m+ ν;−1) can be expressed as a finite combination
of gamma-functions (see the appendix), and simpler formulae forB(ν)nm andG(ν)

nm can be
found. For example, forν = 1 we obtainA(∞)n ≡ 2 for all n, soG(1)

nm = 2B(1)nm. Then, using
equation (A.2), we obtain

G
(1)
m+2k,m = −G(1)

m+2k+1,m =
(−1)k2m( 1

2)m+k
m!k!

λn = n2. (25)

Figure 1 shows the evolution of the photon number distribution in this case. Also, it shows
a perfect coincidence with the Gaussian interpolation formula

p(n, t) = [4πn(t)/3]−1/2 exp

[
−3(n− n(t))2

4n(t)

]
(26)

proposed (forpure two-photonprocesses) in [16]. The sub-Poissonian distribution (26)
possesses the dispersionσn = 2

3n, in agreement with equation (52) atD1t � 1. With the
increase ofν, the curves are shifted to the left without significant changes to their shapes.

The caseν = 0 (pure two-photon absorption) needs a special analysis, because the
subsets consisting of even and odd Fock’s states do not mix, so that we have two additional
constants of motion,b+ andb− (8), and two universal distributions for highly excited initial

Figure 1. The asymptotical photon number distributions forD1 = D2 = 1 andt = 0.01 (right
peak), t = 0.02 (middle peak), andt = 0.1 (left peak). The continuous curves represent the
interpolation formula (26) with the same mean photon numbers.
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states, respectively. In this case equation (16) reads (we use equation (A.1))

pm(t, ν = 0) =
∞∑
k=0

Am+2k
(−1)k(m+ 2k − 1)2m( 1

2)m+k−1

4m!k!
e−λm+2k t m > 2 (27)

p1(t, ν = 0) = b− +
∞∑
k=1

A1+2k
(−1)k( 1

2)k

(k − 1)!
e−2k(2k+1)D2t (28)

p0(t, ν = 0) = b+ +
∞∑
k=1

A2k
(−1)k( 1

2)k

2k!
e−2k(2k−1)D2t . (29)

Evaluating the coefficientsAn for highly excited initial states, we cannot neglect now the
contribution of the domain nearz = −1. But since the Legendre polynomialP (0,0)n−1 (z)

possesses the definite parity(−1)n−1, only even or odd parts of functionF ′0(z) yield the
contribution to the integral. Thus the domain of integration can be reduced to the interval
(0, 1). Then, using the same reasonings as above, we may replaceP

(0,0)
n−1 (z) byP (0,0)n−1 (1) = 1.

Assuming that the occupation probabilities of the lowest levels (p0, p1, . . .) go to zero when
n0 → ∞ (this is the usual case in the physical applications), we arrive at the following
universal formulae for the evolution of highly excited initial states due to the pure two-
photon absorption:

p
(∞)
2l (t, ν = 0) = b+

∞∑
k=0

(−1)k(2l + 2k − 1
2)2

2l( 1
2)2l+k−1

(2l)!k!
e−λ2l+2k t l > 1 (30)

p
(∞)
2l+1(t, ν = 0) = b−

∞∑
k=0

(−1)k(4l + 4k + 1)22l( 1
2)2l+k

(2l + 1)!k!
e−λ2l+2k+1t l > 1 (31)

p
(∞)
1 (t, ν = 0) = b−

[
1+

∞∑
k=1

(−1)k(4k + 1)( 1
2)k

k!
e−2k(2k+1)D2t

]
(32)

p
(∞)
0 (t, ν = 0) = b+

[
1+

∞∑
k=1

(−1)k(4k − 1)( 1
2)k−1

2k!
e−2k(2k−1)D2t

]
. (33)

In the special caseb+ = b− = 1
2 these relations were found in [10].

For any nonzero value ofν, the mean value of the projection operator to the subspace
of the Fock states with odd numbers of photons,b−(t) = 1

2[1− F(−1, t)], eventually goes
to zero. Due to equation (9),

b−(t) = 1

2

∞∑
n=1

(−1)n−1An
(ν)n

n!
e−λnt . (34)

Two evident limiting cases result in the following simple expressions:

b−(t →∞) = ν

2
A1e−D1t + · · · b−(t → 0) = b−(0)−D1tF

′(−1)+ · · · .
For highly excited initial states,n0� max(ν, 1), we obtain

b
(∞)
− (t) = 1

2

∞∑
n=1

(−1)n−1 (2n+ ν − 1)(ν)n−1

n!
e−λnt . (35)

In particular,

b
(∞)
− (t, ν � 1) = 1

2
e−D1t + ν

∞∑
n=2

(−1)n−1 (2n− 1)

2n(n− 1)
e−λnt .

This example shows that the limit transitionν → 0 is not uniform, and the caseν = 0 is
peculiar.



Competition between one- and two-photon absorption processes 2921

3. Mean decay time

The difference between the casesν = 0 andν � 1 is seen distinctly when one analyses the
transition timeto the ground state. Different possible definitions of the transition times have
already been discussed in [17], as well as numerous examples for pure one- or two-photon
processes. Here we confine ourselves to themean transition time

T = [1− p0(0)]
−1
∫ ∞

0
t (dp0/dt) dt = [1− p0(0)]

−1
∫ ∞

0
[1− p0(t)] dt. (36)

This definition can be justified by the observation that the functiong(t) = [1 −
p0(0)]−1 dp0/dt satisfies the relationsg(t) > 0,

∫∞
0 g(t) dt = 1, sog(t) dt can be considered

as the probability of reaching the ground state at the time interval betweent and t + dt .
Using equation (18) we obtain

T = ν

D1[1− p0(0)]

∞∑
n=1

An
(−1)n−1(ν)n−1

n2nn!
F(−n, 1− n; ν;−1)

= ν

D1[1− p0(0)]

[
A1

2
−
∞∑
n=2

An

n(n+ ν − 1)
P (−1,ν−1)
n (0)

]
. (37)

If n0 → ∞, we may replace the coefficientAn with its asymptotical form (22).
Consequently, the transition time is finite even for highly excited initial states and for
any fixed values ofD2 andν:

T
(∞)
(ν) = ν

D1

∞∑
n=1

(−1)n−1(ν)n−1(2n+ ν − 1)

n2nn!(n+ ν − 1)
F (−n, 1− n; ν;−1)

= 1+ ν
2D1

− ν

D1

∞∑
n=2

2n+ ν − 1

n(n+ ν − 1)2
P (−1,ν−1)
n (0) (38)

(for the sake of simplicity, we assume thatp0(0) → 0 whenn0 → ∞). Since the value
of the Jacobi polynomialP (−1,ν−1)

n (0) remains finite atν → 0 for n > 2 (see (11)),

we have limν→0 T
(∞)
(ν) = 1/(2D1), whereas for the pure two-photon absorption [17]

T
(∞)
(D1 = 0) = D−1

2 ln 2. The origin of the difference is quite clear: for small, but
nonzero values ofν, the first-excited Fock state|1〉 is metastable, and its decay time is

proportional toD−1
1 . The plot of functionT

(∞)
(ν) is given in figure 2.

If ν � 1, the value of the hypergeometric function in (38) becomes close to unity, and
(ν)k ≈ νk. In this limiting case we obtain

T
(∞)
(ν � 1) ≈ −D−1

1

∞∑
n=1

(−ν/2)n
nn!

= D−1
1 [ln(ν/2)+ C− Ei(−ν/2)] (39)

where C= 0.577. . . is Euler’s constant, and Ei(x) is the exponential-integral function [15].
Due to the asymptotical formula Ei(−x) ∼ (−x)−1e−x for x � 1, only two first terms
inside the square brackets in (39) are significant atν � 1. If D2 = 0, then the decay time
depends on the initial state, and it goes to infinity with the increase of the initial mean
photon number, approximately as ln(n0) [17]. Thus the caseν = ∞ is also distinguished.

4. Mean values and factorial moments

Taking into account equations (9), (15), and the relations

P (0,β)n (1) = 1 P (1,β)n (1) = 1+ n P
(m−1,β+m)
n−m (1) =

(
n− 1

n−m
)
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Figure 2. The mean transition time from the asymptotical stateT
(∞)

(in the units ofD−1
1 )

versusν = D1/D2.

we obtain the following expressions for the factorial moments (21):

Nm = 1

2m(m− 1)!

∞∑
n=m

(n−m+ 1)m−1(n+ ν − 1)mAne
−λnt . (40)

In particular,

n ≡ N1 = 1
2

∞∑
n=1

(n+ ν − 1)Ane
−λnt (41)

n(n− 1) ≡ N2 = 1
4

∞∑
n=2

(n− 1)(n+ ν)(n+ ν − 1)Ane
−λnt . (42)

ForD1t � 1 orD2t � 1, it is sufficient to retain only the first terms of the series. In the
framework of approximation (20) (i.e. forD1� D2) we obtain

Nm(t) ≈ Nm(0)e−λmt . (43)

Consequently, Mandel’s parameter

Q = [n(n− 1)− (n)2]/n (44)

depends on time as

Q(t) = e−D1t [Q(0)e−2D2t − n0(1− e−2D2t )]. (45)

Whent →∞, Q(t) becomes negative (the signature of the sub-Poissonian statistics, which
is considered usually as evidence of the quantum nature of light)for any initial value
Q(0), provided thatD2 > 0. The type of the photon statistics (Poissonian, sub- or super-
Poissonian) is not changed in the one-photon absorption processes only, whereas even a
small admixture of the two-photon absorption will always result ultimately in a sub-Poisson
statistics, provided that time,t , is sufficiently large. The reason is clear: in the presence of
the two-photon absorption, the second factorial moment decreases faster than the square of
the mean photon number.
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For highly excited initial states, according to equation (22), we have the universal
formulae (ν > 0)

n(∞)(t) = 1
2

∞∑
n=1

(2n+ ν − 1)e−λnt (46)

n(n− 1)
(∞)
(t) = 1

4

∞∑
n=2

(n− 1)(n+ ν)(2n+ ν − 1)e−λnt (47)

N (∞)
m (t) =

∞∑
n=m

(n−m+ 1)m−1(n+ ν)m−1(2n+ ν − 1)

2m(m− 1)!
e−λnt . (48)

In particular, at the final stages of the evolution, whenD1t � 1 or D2t � 1, only terms
with n = m are significant, and we obtain

N (∞)
m (t) ≈ 2−m(m+ ν)m−1(2m+ ν − 1)e−λmt . (49)

If 1 � ν � n0, then the pre-exponential factor in (49) equals simply(D1/2D2)
m. Mandel’s

parameter (44) turns out negative in the limiting case discussed. For example, ifν � 1,
then

Q(∞)(t) ≈ −ν
2

e−D1t [1− e−2D2t ]

so thatQ(∞)(t) ≈ −D1te−D1t in the time intervalD−1
1 � t � D−1

2 . However, one cannot
put D2 = 0, since the formulae presented above hold forn0 � D1/D2. Two-photon
processes are necessary to cause a highly excited system to ‘forget’ its initial state. In the
presence of one-photon processes only, the system always ‘remembers’ its initial state, in
accordance with equation (43), which becomes exact forD2 = 0. If ν � n0 andD2t � 1,
thenQ(∞)(t) ≈ − 1

2e−D1t .
For small values oft , the number of terms yielding significant contributions to the right-

hand sides of (46)–(48) becomes very large, whereas the magnitude of each summand is
only slightly changed under the shiftn→ n+1. Therefore, we may replace the summation
by integration. It is remarkable that all the sums contain the term(2n + ν − 1), which is
proportional to the derivative dλn/dn. Consequently, the integration overn can be replaced
by the integration overλn from 0 to∞. Then the integrals can be calculated exactly, and
we obtain

N (∞)
1 (t → 0) = 1

2D2t
+ 1

12
(2− 3ν)+ D2t

120
(4− 10ν + 5ν2)+ · · · (50)

N (∞)
2 (t → 0) = 1

4D2
2

(
1

t2
− D1

t

)
+ 1

240
(25ν2− 10ν − 4)+ · · · . (51)

The nondivergent (att → 0) terms are obtained with the aid of the Euler–Maclaurin formula
(A.3). They are necessary to obtain the correct expression for theQ-factor up to the linear
terms:

Q(∞)(t → 0) = −1

3
+
(
D1

12
− 2D2

45

)
t + · · · . (52)

The plots ofQ(∞)(t) for different values ofν are given in figure 3.
It is possible to find simple interpolation formulae describing the evolution of the

factorial momentsNm(t) in the whole interval 0< t < ∞. From (4) and (21) we obtain
the equations

Ṅ1 = −D1N1− 2D2N2 (53)
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Figure 3. The time dependence of theQ-factor in the asymptotical state. The curves from
bottom to the top correspond to the following values of parameterν = D1/D2: ν = 0, 0.1, 24

45, 1.
D2 = 1.

Ṅ2 = −2(D1+D2)N2− 4D2N3 (54)

Ṅm = −mD1Nm −D2[2mNm+1+m(m− 1)Nm]. (55)

To disentangle this infinite system of coupled equations, we make an assumption, that the
factorial moments are related in the same manner as in the coherent states (which are
considered usually as the ‘most classical’ states), i.e.Nm = Nm

1 . Namely, making the
substitutionN2 = N 2

1 in (53) andNm+1 = NmN1 in (54), (55) we arrive at simplified
(although approximate, of course) equations, which can be easily solved:

N (clas)
m (t) = Nm(0)e−λmt [1+ 2(D2/D1)N1(0)(1− e−D1t )]−m. (56)

Other approximate solutions for the momentsnl were obtained in the special case ofD1 = 0
in [16].

If t → 0 andN1(0) → ∞, then the leading term of the expansion of the right-hand
side of equation (56),Nm = (2D2t)

−m + · · ·, is the same (form = 1, 2) as the leading
terms in equations (50) and (51), provided thatN2(0) = N 2

1 (0) andD2N1(0)t � 1. Thus,
we obtain the applicability condition of the universal distributions for highly excited initial
states:all the formulae labelled by the superscript(∞) hold for t � 1/(D2n0).

In the next section we shall demonstrate that the coincidence of the exact and
approximate solutions is quite good even for rather small initial values of the mean photon
number: see figure 4. However, more delicate characteristics of the photon number
distribution, such as theQ-factor, are not described by simple interpolation formulae when
D1,2t ∼ 1: see figure 5.

5. Examples

For the intermediate values of the initial parameters and time, one needs the concrete
values of the coefficientsAn in the decomposition (9). Fortunately, the explicit analytical
expressions for these coefficients can be found in many important special cases.
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Figure 4. The time dependence of the mean photon number for different states with the same
initial valuen0 = 2. The order of the curves in the middle part of the plot (from top to bottom):
binomial state withM = 4, η = 1

2 ; coherent state witha = 2; interpolation formula (56);
negative binomial states withµ = 1

2 , ξ = 4
5 . D1 = D2 = 1.

Figure 5. The time dependence of theQ-factor for coherent and binomial initial states and for
their even and odd counterparts. The two upper curves (at large values of time) correspond to
even states, the two middle curves correspond to original coherent and binomial states, and the
two lower curves correspond to odd states. The initial mean photon number equalsn0 = 4 in
all the cases.Q(0) = −0.5 for all types of the binomial states, whereasQ(0) is close to zero
(with opposite signs) for even/odd coherent states, andQ(0) = 0 for coherent states.D1 = 1,
ν = 0.5.
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5.1. Evolution of initial coherent states

Let us begin with the initialcoherentstate|α〉, which has the following properties (a = |α|2):

pn(0) = e−aan/n! F0(z) = exp[a(z − 1)] n0 = a Nm = am Q = 0.

Then we obtain (the details of the calculations are given in the appendix)

A(coh)
n = (2a)n 0(n− 1+ ν)

0(2n− 1+ ν)8(n; ν + 2n;−2a) (57)

8(a; c; z) being the Kummer confluent hypergeometric function. Atν = 0 function
8(n; 2n; z) is reduced to the Bessel function, and we recover the result of [10],

b(coh)
n = −(n− 1

2)
√

2πae−aIn−1/2(a).

If D2� D1, thenν � 1, so we can write8(n; ν + 2n;−2a) ≈ 1− 2an/ν +O((an/ν)2).
Neglecting the terms of the order ofO((an/ν)2), we obtain for the mean photon number

n(t) = n0e−D1t − 2a2

ν
e−D1t [1− e−D1t−2D2t ]. (58)

For Mandel’s parameter we obtain the same expressions as given by equation (45), the
corrections being of the order ofa/ν:

Q(coh)(t) = −ae−D1t (1− e−2D2t ). (59)

Using the known integral representation of the confluent hypergeometric function [15], we
can rewrite (57) as (n > 1)

A(coh)
n = (2a)n

(n− 1)!

(2n− 1+ ν)
(n− 1+ ν)

∫ 1

0
e−2at tn−1(1− t)n+ν−1 dt

= 1

(n− 1)!

(2n− 1+ ν)
(n− 1+ ν)

∫ 2a

0
e−xxn−1

(
1− x

2a

)n+ν−1
dx. (60)

This form is convenient for the numerical calculations. Moreover, ifa � 1, one can replace
[1− x/(2a)]n+ν−1 by exp[−(n+ ν − 1)x/(2a)] and perform the integration overx from 0
to∞. In this way we obtain the following asymptotics:

A(coh)
n ≈ (2n− 1+ ν)

(n− 1+ ν)
(

1+ ν + n− 1

2a

)−n
a � 1.

If a � 1 andν � 1, then

A(coh)
n ≈

(
2a

2a + ν
)n

(61)

so atD1t � 1 (when the transient processes are finished) we have from equation (40)

Nm(t) ≈
(

aν

2a + ν
)m

e−λmt Q(t) ≈ − aν

2a + ν e−D1t [1− e−2D2t ].

For ν � a � 1 we recover equations (43) and (59). In the opposite casea � ν + n − 1,
the initial value of the mean photon number disappears from the coefficientsAn, and we
arrive at (22).
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5.2. Binomial and Fock’s states

The binomial state [18–22] has the following photon distribution and the generating
functions (M is an integer, 06 η 6 1):

p(bin)
n =

(
M

n

)
ηn(1− η)M−n F

(bin)
0 (z) = (1− η + ηz)M.

Its factorial moments and Mandel’s parameter read

n0 = Mη Nm = M!

(M −m)! η
m Q = −η. (62)

In this case, Mandel’s parameter does not depend on the mean photon number, and it is
always negative. The coefficientsAn can be expressed in terms of the Jacobi polynomials
or the Gauss hypergeometric functionF(a, b; c; z) (see the appendix):

A(bin)
n (M, η) = M!(2η)M

(n− 1+ ν)n(2n+ ν)M−n P
(−M,−M−ν)
M−n

(
η − 1

η

)
= (2η)n (M − n+ 1)n

(M + ν)n
2n− 1+ ν
n− 1+ ν F (n−M,n; 1−M − ν; 1− 2η). (63)

If both M andν are large, then it is not difficult to obtain the asymptotics of (63),

A(bin)
n (M, η) ≈

(
2Mη

2Mη + ν
)n

which coincides with (61), if one takes into account thatMη = n0.
If η = 1, we have the initialFock state|M〉: pn(0) = δnM , F0(z) = zM . ForM > n > 1,

A(Fock)
n (M) = M!2M

(n− 1+ ν)n(2n+ ν)M−n P
(−M,−M−ν)
M−n (0)

= 2n
(M − n+ 1)n
(M + ν)n

2n− 1+ ν
n− 1+ ν F (n−M,n; 1−M − ν;−1). (64)

However, the simplest expressions can be obtained in the caseη = 1
2, when the

hypergeometric function equals unity:

A(bin)
n (M, 1

2) =
(M − n+ 1)n
(M + ν)n

2n− 1+ ν
n− 1+ ν . (65)

Explicit expressions in terms of the factorials and elementary functions can be written also
for integral values of the parameterν. For example,

A(bin)
n (M, ν = 1, η = 1

2) =
2(M!)2

(M − n)!(M + n)! .

5.3. Negative binomial and thermal states

The negative binomial statesare described by means of the relations (µ > 0, 06 ξ < 1)

pn(µ, ξ) = (1− ξ)µ (µ)n
n!

ξn F0(z) =
(

1− ξ
1− zξ

)µ
n0 = µξ

1− ξ Nm = (µ)m
(

ξ

1− ξ
)m

Q = ξ

1− ξ .
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These states were discussed in [20, 23]. The special caseµ = 1 corresponds to the initial
thermal statewith the dimensionless inverse temperature 1/T = ln(1/ξ):

pn(ξ) = (1− ξ)ξn n = Q = ξ

1− ξ F0(z) = 1− ξ
1− zξ .

For these states we have the following coefficients (see the appendix):

A(negbin)
n = (µ)n

(n− 1+ ν)n

(
2ξ

1− ξ
)n
F

(
µ+ n, n; 2n+ ν; −2ξ

1− ξ
)

= (µ)n(2n− 1+ ν)
(n− 1)!(n− 1+ ν) (2n0/µ)

n

∫ 1

0
tn−1(1− t)n−1+ν(1+ 2tn0/µ)

−n−µ dt.

(66)

In the special caseν = 0, µ = 1, the Gauss hypergeometric function admits a quadratic
transformation, and (66) can be written in the same form as in [24], where the evolution
of the thermal states under pure two-photon processes was considered. Whenξ → 1
(n0→∞), ξ disappears from the right-hand side of equation (66) (see asymptotics of the
hypergeometric function in the appendix), and we arrive again at the universal formula (22).

For some specific values of parameters, the explicit expressions forAn in terms of the
elementary functions exist. For example,

A(negbin)
n (µ = 1

2, ν = 1) = 2(2ξ)n
[√

1− ξ +
√

1+ ξ
]−2n

.

Figure 4 demonstrates the time dependence of the mean photon number for the coherent
states and for the special cases of binomial and negative binomial states withη = µ = 1

2.
If parametersµ andν and integers, then the hypergeometric function of argument−y

can be expressed in terms of a finite number of derivatives of functiony−1 ln(1+y) (see the
appendix). However, in numerical calculations it is better to use the integral representation
of coefficientsAn given in the second line of formula (66).

5.4. Even and odd coherent states

Now we proceed to the superposition states possessing extremal initial values of the parity
coefficients: b±(0) = 0 or 1. Let us begin witheven and odd coherent statesintroduced
in [25] (later publications can be found in [26, 27]; for the most recent generalizations see,
e.g. [28–30]):

|α;±〉 = [2(1± e−2a)]−1/2(|α〉 ± | − α〉) a = |α|2

p
(+)
2n =

a2n

(2n)! cosha
p
(+)
2n+1 = 0 F

(+)
0 (z) = cosh(az)

cosha

p
(−)
2n+1 =

a2n+1

(2n+ 1)! sinha
p
(−)
2n = 0 F

(−)
0 (z) = sinh(az)

sinha
.

The initial factorial moments read

N (+)
2k+1 = a2k+1 tanha N (−)

2k+1 = a2k+1 cotha N (±)
2k = a2k.

Mandel’s parameter assumes opposite signs for the even and odd states, and its absolute
value does not exceed unity:

Q(±) = ± 2a

sinh(2a)
.
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Using equation (57) we obtain the following coefficients of the expansion (9):

A(±)n =
0(n− 1+ ν)
0(2n− 1+ ν)

(2a)n

ea ± e−a
[ea8(n; ν + 2n;−2a)± (−1)ne−a8(n; ν + 2n; 2a)].

If 1 ∼ a � ν, the mean photon number is given by equation (58), both for even and odd
states. However, the relations between the parametersa and n0 are different. Therefore,
having the same initial valuen0, at t > 0 we obtainn(+)(t) < n(coh)(t) < n(−)(t). For
Mandel’s parameter we obtain the expressions (compare with equation (59))

Q(+)(t) = 2a

sinh(2a)
e−D1t [e−2D2t cosh2(a)− sinh2(a)]

Q(−)(t) = − 2a

sinh(2a)
e−D1t [cosh2(a)− sinh2(a)e−2D2t ]

the corrections are of the order ofa/ν:
If a ∼ ν � 1, then8(n; ν + 2n; 2a) tends to zero [31]:

8(n; ν + 2n; 2a) ∼
{

e−2a[(ν/2a)− 1]−n for ν/2a > 1

(2a/ν2)n exp[−2a + cν − ν ln ν] for a > ν

(c ∼ 1 being some function of the ratioa/ν). In this case the expressions for the coefficients
An in the initial even and odd states practically coincide with formula (57) for the coherent
states. However, for moderate values ofa, ν, andD1,2t , a nontrivial behaviour of theQ-
factor is observed. Figure 5 shows the dependenceQ(t) for coherent, even, and odd states
with the same initial mean photon numbern0 = 4. Although the initial values ofQ-factor
are very close,Q(coh)(0) = 0, Q(±)(0) ≈ ±0.005, the evolution turns out quite different in
the time interval 0.1 < t < 1. Moreover, the plot of functionQ(clas)(t) calculated on the
basis of the interpolation (56) (not shown in the figure) differs significantly from any exact
curve.

5.5. Even and odd binomial states

These states are described by the formulae

F
(±)
0 (z) = (1− η + ηz)M ± (1− η − ηz)M

1± (1− 2η)M

p(±)n =
(
M

n

)
(1− η)M−nηn[1± (−1)n]

1± (1− 2η)M

N (±)
m = M!

(M −m)! η
m 1± (−1)m(1− 2η)M−m

1± (1− 2η)M
.

The even binomial states were introduced in [32]. For the coefficientsAn we obtain the
expression

A(±)n (M, η) = (2η)n

1± (1− 2η)M
(M − n+ 1)n
(M + ν)n

2n− 1+ ν
n− 1+ ν

[
F(n−M,n; 1−M − ν; 1− 2η)

±(−1)n(1− 2η)M−nF
(
n−M,n; 1−M − ν; 1

1− 2η

)]
.

We confine ourselves to the case ofη = 1
2, when all the formulae simplify significantly:

p(±1/2)
n = 2−M

(
M

n

)
[1± (−1)n]
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A(±)n (M, 1
2) =

(M − n+ 1)n
(M + ν)n

2n− 1+ ν
n− 1+ ν

[
1± (−1)n

(M − 1)!0(n+ ν)
(n− 1)!0(M + ν)

]
.

The peculiarity of this case is that the initialQ-factor and all but one factorial moments are
given by the same expressions (62) as for the original binomial states, excepting theMth
factorial moment:

N (±)
M (η = 1

2) = M!2−M [1± (−1)M ].

None the less, since the two-photon processes are sensitive to the high-order factorial
moments, theQ-factor begins to feel the difference in this last moment rather quickly:
see figure 5. It is interesting that after a short transient time, the curves corresponding to
the same initial parity of states (even, odd, or states without definite parity) become very
close (and well separated from the curves with different initial parities), although the initial
valuesQ(0) are quite different.

5.6. Even and odd negative binomial states

Even and odd counterparts of negative binomial states are described by the relations

F (±)(z;µ, ξ) = B(±)(µ, ξ)[(1− zξ)−µ ± (1+ zξ)−µ]

p(±)n (µ, ξ) = B(±)(µ, ξ) (µ)n
n!

ξn[1± (−1)n]

N (±)
m (µ, ξ) = B(±)(µ, ξ)µmξm[(1− ξ)−µ−m ± (−1)m(1+ ξ)−µ−m]

with the normalization constant

B(±)(µ, ξ) = [(1− ξ)−µ ± (1+ ξ)−µ]−1.

For these states the coefficientsA(±)n read

A(±)n =
(µ)n

(n− 1+ ν)n(2ξ)nB
(±)(µ, ξ)

[
(1− ξ)−µ−nF

(
µ+ n, n; 2n+ ν; 2ξ

ξ − 1

)
±(−1)n(1+ ξ)−µ−nF

(
µ+ n, n; 2n+ ν; 2ξ

ξ + 1

)]
.

In the special case ofeven and odd thermal states(the even thermal states were considered
in [33, 34]) we have (µ = 1)

p(±)n = 1
2g±(1− ξ2)ξn[1± (−1)n] g+ = 1 g− = 1/ξ

F
(+)
therm(z) =

1− ξ2

1− z2ξ2
F
(−)
therm(z) = z

1− ξ2

1− z2ξ2

n(+) = 2ξ2

1− ξ2
ξ2 = n(+)

n(+) + 2
n(−) = 1+ ξ2

1− ξ2
ξ2 = n(−) − 1

n(−) + 1

Q(+) = 1+ ξ2

1− ξ2
= n(+) + 1 Q(−) = ξ4+ 4ξ2− 1

1− ξ4
= n(−) − 1− 1/n(−)

N (±)
m = 1

2
m!g±

(
ξ

1− ξ2

)m
[(1+ ξ)m+1± (−1)m(1− ξ)m+1]

A(±)n =
n!(2ξ)n(1− ξ2)g±

2(n− 1+ ν)n

[
(1− ξ)−n−1F

(
1+ n, n; 2n+ ν; 2ξ

ξ − 1

)
±(−1)n(1+ ξ)−n−1F

(
1+ n, n; 2n+ ν; 2ξ

ξ + 1

)]
.
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In the limiting caseµ→ 0 of the odd negative binomial states go to theodd logarithmic
states, which can be considered as an odd counterpart of the ‘logarithmic states’ introduced
in [35]. These states have the following properties:

F(z; ξ) = G(ξ) ln
1+ zξ
1− zξ G(ξ) =

(
ln

1+ ξ
1− ξ

)−1

pn = G(ξ)ξ
n

n
[1− (−1)n] n > 1

Nm = G(ξ)(m− 1)!ξm[(1− ξ)−m − (−1)m(1+ ξ)−m]

n = 2ξG(ξ)
1− ξ2

n(n− 1) = 4ξ3G(ξ)
(1− ξ2)2

Q = 2ξ

1− ξ2
[ξ − G(ξ)]

An = (n− 1)!(2ξ)−n−1

(n− 1+ ν)n

[
(1− ξ)−nF

(
n, n; 2n+ ν; 2ξ

ξ − 1

)
−(−1)n(1+ ξ)−nF

(
n, n; 2n+ ν; 2ξ

ξ + 1

)]
.

However, the plots of various functions (such asQ(±)(t)) are not so expressive as in
the previous cases, so we do not bring them here. (For example,Q-factor, being positive
and large att = 0, quickly goes to the negative domain and then slowly approaches zero
value ast →∞.)

6. Summary and conclusions

Let us collate the main results of the paper. We have presented analytical solutions to the
infinite set of coupled equations for the density matrix diagonal elements and for the factorial
moments of all orders. The explicit expressions for the coefficients in these solutions
are obtained for almost all interesting specific quantum states. The only exception is the
squeezed state. For highly excited initial states, we have found simple interpolation formulae
giving the time dependence of the factorial moments in the whole interval 0< t <∞. These
formulae are in a good agreement with the exact results even for rather moderate values of
the initial factorial moments. We have demonstrated that Mandel’sQ-parameter is sensitive
even to small differences in the initial values of the factorial moments, and it exhibits a
nontrivial behaviour at the intermediate stage of the relaxation process, corresponding to
the maximal competition between the one- and two-photon absorption. We have analysed
in detail the universal distributions which arise for any highly excited initial state after a
short transition time of the order of(D2n0)

−1. Also, we have considered the influence of
the ratioD1/D2 on the mean transition time from the initial state to the ground state, and
we have found that this time remains finite even for highly excited states, provided that the
two-photon absorption coefficientD2 does not equal zero.

It should be noted that all the characteristics of the photon distributions considered
above depend on the diagonal elements of the density matrix only. Therefore they coincide,
e.g. for the genuinepure states and for the statistical mixtures with the same values of the
diagonal matrix elements. For these reasons, it is interesting to study the behaviour of the
off-diagonalmatrix elements, which observes the difference between pure and mixed states
(for pure two-photon absorption this was done in [36, 37]). We shall consider this problem
in a separate paper.
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Appendix

Here we have collected the formulae used in deriving the relations given in sections 2–5.
The division into sections is made in accordance with the main part of the paper.

A.1. From section 2

Equation (12) can be derived from formula 7.391.10 of [14],∫ 1

−1
(1− x)ρ(1+ x)βP (α,β)n (x)P (ρ,β)m (x) dx

= 2ρ+β+10(ρ +m+ 1)0(β + n+ 1)0(α + β +m+ n+ 1)

m!(n−m)!0(α + β + n+ 1)0(ρ + β +m+ n+ 2)

×0(α − ρ −m+ n)
0(α − ρ)

(which holds forβ > −1, ρ > −1), if one putsα = −1, ρ = −1+ ε, and takes the limit
ε→ 0.

Rodrigues’ formula for the Jacobi polynomials reads

(−1)n2nn!(1− x)α(1+ x)βP (α,β)n (x) = dn

dxn
[(1− x)α+n(1+ x)β+n].

The Jacobi polynomialP (α,β)k (x) is expressed in terms of the Gauss hypergeometric
function as follows [15]:

P
(α,β)

k (x) = 0(β + α + 2k + 1)

k!0(β + α + k + 1)

(
x − 1

2

)k
F

(
−k,−k − α;−2k − α − β; 2

1− x
)

=
(
k + β
k

)(
x − 1

2

)k
F

(
−k,−k − α;β + 1; x + 1

x − 1

)
.

The partial cases of the hypergeometric function [38]:

F(a, b; a − b + 1;−1) = 2−a0( 1
2)0(1+ a − b)

0(1+ a/2− b)0( 1
2 + a/2)

(A.1)

F(a, b; a − b + 2;−1) = 0( 1
2)0(2+ a − b)

2a(b − 1)

×
[

1

0(a/2)0( 3
2 + a/2− b)

− 1

0( 1
2 + a/2)0(1+ a/2− b)

]
. (A.2)

The following known relations are useful in calculations:

(a)n ≡ 0(a + n)
0(a)

≡ a(a + 1) . . . (a + n− 1) (a)0 ≡ 1

(ξ − n)k = (−1)k(n− ξ − k + 1)k = (−1)k
0(n− ξ + 1)

0(n− ξ − k + 1)

0(2z) = 22z−10(z)0(z + 1
2)/0(

1
2).
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A.2. From section 4

The Euler–Maclaurin summation formula up to the third-order terms reads [38]

n−1∑
k=1

fk =
∫ n

0
f (k) dk − 1

2[f (0)+ f (n)] − 1
12[f ′(0)− f ′(n)] + 1

720[f ′′′(0)− f ′′′(n)] + · · · .

(A.3)

In our casen = ∞, but functionf (n) and all its derivatives turn into zero whenn→∞.

A.3. From section 5.1

Equation (57) is a consequence of the expansion (−1< x < 1) [39]

exy = (2y)−1−(α+β)/2
∞∑
n=0

0(α + β + n+ 1)

0(α + β + 2n+ 1)
Mκ,µ(2y)P

(α,β)
n (x)

whereκ = (α − β)/2, µ = n+ (α + β + 1)/2, andMκ,µ(z) is the Whittaker function:

Mκ,µ(z) = zµ+1/2e−z/28(µ− κ + 1
2; 1+ 2µ; z) = zµ+1/2ez/28(µ+ κ + 1

2; 1+ 2µ;−z).
The confluent hypergeometric function8(a; c; x) has the following asymptotical

expansions for large values of|x| and fixeda andc [15]:

8(a; c; x) ∼


0(c)

0(a)
exxa−c x > 0

0(c)

0(c − a)(−x)
−a x < 0.

Its integral representation reads

8(a; c; x) = 0(c)

0(a)0(c − a)
∫ 1

0
exuua−1(1− u)c−a−1 du c > a > 0.

A.4. From section 5.2

The formulae in section 5.2 are based on the results of Carlson’s monograph [40]. He gives
the expansion (p 223, example 7.2-2)

(A+ Bx)M =
M∑
n=0

(
M

n

)
BnRM−n(1+ α + n, 1+ β + n;A− B,A+ B)

×Rn(−α − n,−β − n; x + 1, x − 1)

where his polynomialsRn(f, f ′; x, y) are related to the usual Jacobi polynomials as follows,

Rn(f, f
′; x, y) = n!

(f + f ′)n (y − x)
nP (−f−n,−f

′−n)
n

(
x + y
x − y

)
.

Thus we obtain the formula

(A+ Bx)M =
M∑
n=0

M!(2B)M

(n+ α + β + 1)n(2n+ α + β + 2)M−n

×P (−1−M−α,−1−M−β)
M−n

(
−A
B

)
P (α,β)n (x).

Equation (63) is its special case forα = −1, β = −1+ ν, B = 1− A = η.
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A.5. From section 5.3

In the case of the negative binomial states we use formula ([40], p 227, example 7.7-14)

(A− Bx)−µ =
∞∑
n=0

(µ)n

n!
BnR−µ−n(1+ α + n, 1+ β + n;A+ B,A− B)

×Rn(−α − n,−β − n; x + 1, x − 1).

With the aid of the relation ([40], p 117)

R−a(f, f ′; x, y) = y−aF
(
a, f ; f + f ′; 1− x

y

)
we can write

(A− Bx)−µ =
∞∑
n=0

(µ)n(2B)nF (µ+ n, 1+ α + n; 2+ α + β + 2n; 2B
B−A)

(A− B)µ+n(1+ α + β + n)n P (α,β)n (x).

Takingα = −1, β = −1+ ν, A = 1, B = ξ , we arrive at equation (66).
The integral representation for the Gauss hypergeometric function (c > b > 0):

F(a, b; c; z) = 0(c)

0(b)0(c − b)
∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt. (A.4)

The leading term of the asymptotical expansion ofF(µ+ n, n; 2n+ ν;−z) for z � 1 and
µ > 0 reads [15]

F(µ+ n, n; 2n+ ν;−z) ≈ 0(2n+ ν)
(µ)n0(n+ ν)z

−n.

If µ andν are nonnegative integers, then formula 2.2.2(4) from [15] yields

F(n+ µ, n; 2n+ ν;−y) = (−1)µ+ν(2n+ ν − 1)!

(n+ ν − 1− µ)!(n− 1)!(n+ µ− 1)!(n+ ν − 1)!

×D̂n−1+µ
(
(1+ y)n−1+νD̂n−1+ν−µ

[
1

y
ln(1+ y)

])
whereD̂ ≡ d/dy.
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